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In the talk, I presented the study of two examples of biological feedback processes present in 

the nervous system, one at the single cell level and the other one at the network level. I study 

these phenomena using tools from dynamical systems theory (Ermentrout and Terman, 20). 

At the single cell level, I showed the example of phasic neurons, which typically fire only for a 

fast-rising input, say at the onset of a step current, but not for steady or slow inputs, a 

property associated with type III excitability. Exemplars are found in the auditory brain stem 

where precise timing is used in sound localization. Phasicness at the cellular level arises from a 

dynamic, voltage-gated, negative feedback that can be recruited subthreshold, preventing the 

neuron from reaching spike threshold if the voltage does not rise fast enough. We consider 

two mechanisms for phasicness: a low threshold potassium current (subtractive mechanism) 

and a sodium current with subthreshold inactivation (divisive mechanism). We analyse 

reduced models using tools from dynamical systems theory. We find that each mechanism 

contributes features but best performance is attained if both are present. The subtractive 

mechanism confers extraordinary precision for phase locking and coincidence detection but 

only within a restricted parameter range when the divisive mechanism of sodium inactivation 

is inoperative. The divisive mechanism guarantees robustness of phasic properties, without 

compromising excitability, although with somewhat less precision.  

At the network level, I discussed the role of oscillations in neural communication. The 

Communication Through Coherence (CTC) theory (Fries, 05,15) proposes that neural 

oscillations regulate the information flow without changing the anatomical connections. Thus, 

neural communication is established if the underlying oscillatory activity of the emitting and 

receiving populations is properly phase locked, so that inputs arrive at the peaks of excitability 

of the receiving population. The oscillators must be therefore phase-locked to accomplish 

strong communication. In the talk, I discussed how phase-locking properties may be studied in 

an Excitatory - Inhibitory (E-I) network subject to external periodic forcing, simulating the input 

from other oscillating neural groups. Finally, I discussed the implications of the computed 

phase-locked states on neuronal communication.  
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